first commit
This commit is contained in:
360
pkg/cmap/cmap.go
Normal file
360
pkg/cmap/cmap.go
Normal file
@ -0,0 +1,360 @@
|
||||
package cmap
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"sync"
|
||||
)
|
||||
|
||||
var ShardCount = 32
|
||||
|
||||
type Stringer interface {
|
||||
fmt.Stringer
|
||||
comparable
|
||||
}
|
||||
|
||||
// ConcurrentMap A "thread" safe map of type string:Anything.
|
||||
// To avoid lock bottlenecks this map is dived to several (ShardCount) map shards.
|
||||
type ConcurrentMap[K comparable, V any] struct {
|
||||
shards []*ConcurrentMapShared[K, V]
|
||||
sharding func(key K) uint32
|
||||
}
|
||||
|
||||
// ConcurrentMapShared A "thread" safe string to anything map.
|
||||
type ConcurrentMapShared[K comparable, V any] struct {
|
||||
items map[K]V
|
||||
sync.RWMutex // Read Write mutex, guards access to internal map.
|
||||
}
|
||||
|
||||
func create[K comparable, V any](sharding func(key K) uint32) ConcurrentMap[K, V] {
|
||||
m := ConcurrentMap[K, V]{
|
||||
sharding: sharding,
|
||||
shards: make([]*ConcurrentMapShared[K, V], ShardCount),
|
||||
}
|
||||
for i := 0; i < ShardCount; i++ {
|
||||
m.shards[i] = &ConcurrentMapShared[K, V]{items: make(map[K]V)}
|
||||
}
|
||||
return m
|
||||
}
|
||||
|
||||
// New Creates a new concurrent map.
|
||||
func New[V any]() ConcurrentMap[string, V] {
|
||||
return create[string, V](fnv32)
|
||||
}
|
||||
|
||||
// NewStringer Creates a new concurrent map.
|
||||
func NewStringer[K Stringer, V any]() ConcurrentMap[K, V] {
|
||||
return create[K, V](strfnv32[K])
|
||||
}
|
||||
|
||||
// NewWithCustomShardingFunction Creates a new concurrent map.
|
||||
func NewWithCustomShardingFunction[K comparable, V any](sharding func(key K) uint32) ConcurrentMap[K, V] {
|
||||
return create[K, V](sharding)
|
||||
}
|
||||
|
||||
// GetShard returns shard under given key
|
||||
func (m ConcurrentMap[K, V]) GetShard(key K) *ConcurrentMapShared[K, V] {
|
||||
return m.shards[uint(m.sharding(key))%uint(ShardCount)]
|
||||
}
|
||||
|
||||
func (m ConcurrentMap[K, V]) MSet(data map[K]V) {
|
||||
for key, value := range data {
|
||||
shard := m.GetShard(key)
|
||||
shard.Lock()
|
||||
shard.items[key] = value
|
||||
shard.Unlock()
|
||||
}
|
||||
}
|
||||
|
||||
// Set Sets the given value under the specified key.
|
||||
func (m ConcurrentMap[K, V]) Set(key K, value V) {
|
||||
// Get map shard.
|
||||
shard := m.GetShard(key)
|
||||
shard.Lock()
|
||||
shard.items[key] = value
|
||||
shard.Unlock()
|
||||
}
|
||||
|
||||
// UpsertCb Callback to return new element to be inserted into the map
|
||||
// It is called while lock is held, therefore it MUST NOT
|
||||
// try to access other keys in same map, as it can lead to deadlock since
|
||||
// Go sync.RWLock is not reentrant
|
||||
type UpsertCb[V any] func(exist bool, valueInMap V, newValue V) V
|
||||
|
||||
// Upsert Insert or Update - updates existing element or inserts a new one using UpsertCb
|
||||
func (m ConcurrentMap[K, V]) Upsert(key K, value V, cb UpsertCb[V]) (res V) {
|
||||
shard := m.GetShard(key)
|
||||
shard.Lock()
|
||||
v, ok := shard.items[key]
|
||||
res = cb(ok, v, value)
|
||||
shard.items[key] = res
|
||||
shard.Unlock()
|
||||
return res
|
||||
}
|
||||
|
||||
// SetIfAbsent Sets the given value under the specified key if no value was associated with it.
|
||||
func (m ConcurrentMap[K, V]) SetIfAbsent(key K, value V) bool {
|
||||
// Get map shard.
|
||||
shard := m.GetShard(key)
|
||||
shard.Lock()
|
||||
_, ok := shard.items[key]
|
||||
if !ok {
|
||||
shard.items[key] = value
|
||||
}
|
||||
shard.Unlock()
|
||||
return !ok
|
||||
}
|
||||
|
||||
// Get retrieves an element from map under given key.
|
||||
func (m ConcurrentMap[K, V]) Get(key K) (V, bool) {
|
||||
// Get shard
|
||||
shard := m.GetShard(key)
|
||||
shard.RLock()
|
||||
// Get item from shard.
|
||||
val, ok := shard.items[key]
|
||||
shard.RUnlock()
|
||||
return val, ok
|
||||
}
|
||||
|
||||
// Count returns the number of elements within the map.
|
||||
func (m ConcurrentMap[K, V]) Count() int {
|
||||
count := 0
|
||||
for i := 0; i < ShardCount; i++ {
|
||||
shard := m.shards[i]
|
||||
shard.RLock()
|
||||
count += len(shard.items)
|
||||
shard.RUnlock()
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
// Has Looks up an item under specified key
|
||||
func (m ConcurrentMap[K, V]) Has(key K) bool {
|
||||
// Get shard
|
||||
shard := m.GetShard(key)
|
||||
shard.RLock()
|
||||
// See if element is within shard.
|
||||
_, ok := shard.items[key]
|
||||
shard.RUnlock()
|
||||
return ok
|
||||
}
|
||||
|
||||
// Remove removes an element from the map.
|
||||
func (m ConcurrentMap[K, V]) Remove(key K) {
|
||||
// Try to get shard.
|
||||
shard := m.GetShard(key)
|
||||
shard.Lock()
|
||||
delete(shard.items, key)
|
||||
shard.Unlock()
|
||||
}
|
||||
|
||||
// RemoveCb is a callback executed in a map.RemoveCb() call, while Lock is held
|
||||
// If returns true, the element will be removed from the map
|
||||
type RemoveCb[K any, V any] func(key K, v V, exists bool) bool
|
||||
|
||||
// RemoveCb locks the shard containing the key, retrieves its current value and calls the callback with those params
|
||||
// If callback returns true and element exists, it will remove it from the map
|
||||
// Returns the value returned by the callback (even if element was not present in the map)
|
||||
func (m ConcurrentMap[K, V]) RemoveCb(key K, cb RemoveCb[K, V]) bool {
|
||||
// Try to get shard.
|
||||
shard := m.GetShard(key)
|
||||
shard.Lock()
|
||||
v, ok := shard.items[key]
|
||||
remove := cb(key, v, ok)
|
||||
if remove && ok {
|
||||
delete(shard.items, key)
|
||||
}
|
||||
shard.Unlock()
|
||||
return remove
|
||||
}
|
||||
|
||||
// Pop removes an element from the map and returns it
|
||||
func (m ConcurrentMap[K, V]) Pop(key K) (v V, exists bool) {
|
||||
// Try to get shard.
|
||||
shard := m.GetShard(key)
|
||||
shard.Lock()
|
||||
v, exists = shard.items[key]
|
||||
delete(shard.items, key)
|
||||
shard.Unlock()
|
||||
return v, exists
|
||||
}
|
||||
|
||||
// IsEmpty checks if map is empty.
|
||||
func (m ConcurrentMap[K, V]) IsEmpty() bool {
|
||||
return m.Count() == 0
|
||||
}
|
||||
|
||||
// Tuple Used by the Iter & IterBuffered functions to wrap two variables together over a channel,
|
||||
type Tuple[K comparable, V any] struct {
|
||||
Key K
|
||||
Val V
|
||||
}
|
||||
|
||||
// IterBuffered returns a buffered iterator which could be used in a for range loop.
|
||||
func (m ConcurrentMap[K, V]) IterBuffered() <-chan Tuple[K, V] {
|
||||
chans := snapshot(m)
|
||||
total := 0
|
||||
for _, c := range chans {
|
||||
total += cap(c)
|
||||
}
|
||||
ch := make(chan Tuple[K, V], total)
|
||||
go fanIn(chans, ch)
|
||||
return ch
|
||||
}
|
||||
|
||||
// Clear removes all items from map.
|
||||
func (m ConcurrentMap[K, V]) Clear() {
|
||||
for item := range m.IterBuffered() {
|
||||
m.Remove(item.Key)
|
||||
}
|
||||
}
|
||||
|
||||
// Returns an array of channels that contains elements in each shard,
|
||||
// which likely takes a snapshot of `m`.
|
||||
// It returns once the size of each buffered channel is determined,
|
||||
// before all the channels are populated using goroutines.
|
||||
func snapshot[K comparable, V any](m ConcurrentMap[K, V]) (chans []chan Tuple[K, V]) {
|
||||
//When you access map items before initializing.
|
||||
if len(m.shards) == 0 {
|
||||
panic(`cmap.ConcurrentMap is not initialized. Should run New() before usage.`)
|
||||
}
|
||||
chans = make([]chan Tuple[K, V], ShardCount)
|
||||
wg := sync.WaitGroup{}
|
||||
wg.Add(ShardCount)
|
||||
// Foreach shard.
|
||||
for index, shard := range m.shards {
|
||||
go func(index int, shard *ConcurrentMapShared[K, V]) {
|
||||
// Foreach key, value pair.
|
||||
shard.RLock()
|
||||
chans[index] = make(chan Tuple[K, V], len(shard.items))
|
||||
wg.Done()
|
||||
for key, val := range shard.items {
|
||||
chans[index] <- Tuple[K, V]{key, val}
|
||||
}
|
||||
shard.RUnlock()
|
||||
close(chans[index])
|
||||
}(index, shard)
|
||||
}
|
||||
wg.Wait()
|
||||
return chans
|
||||
}
|
||||
|
||||
// fanIn reads elements from channels `chans` into channel `out`
|
||||
func fanIn[K comparable, V any](chans []chan Tuple[K, V], out chan Tuple[K, V]) {
|
||||
wg := sync.WaitGroup{}
|
||||
wg.Add(len(chans))
|
||||
for _, ch := range chans {
|
||||
go func(ch chan Tuple[K, V]) {
|
||||
for t := range ch {
|
||||
out <- t
|
||||
}
|
||||
wg.Done()
|
||||
}(ch)
|
||||
}
|
||||
wg.Wait()
|
||||
close(out)
|
||||
}
|
||||
|
||||
// Items returns all items as map[string]V
|
||||
func (m ConcurrentMap[K, V]) Items() map[K]V {
|
||||
tmp := make(map[K]V)
|
||||
|
||||
// Insert items to temporary map.
|
||||
for item := range m.IterBuffered() {
|
||||
tmp[item.Key] = item.Val
|
||||
}
|
||||
|
||||
return tmp
|
||||
}
|
||||
|
||||
// IterCb Iterator callbacalled for every key,value found in
|
||||
// maps. RLock is held for all calls for a given shard
|
||||
// therefore callback sess consistent view of a shard,
|
||||
// but not across the shards
|
||||
type IterCb[K comparable, V any] func(key K, v V)
|
||||
|
||||
// IterCb Callback based iterator, cheapest way to read
|
||||
// all elements in a map.
|
||||
func (m ConcurrentMap[K, V]) IterCb(fn IterCb[K, V]) {
|
||||
for idx := range m.shards {
|
||||
shard := (m.shards)[idx]
|
||||
shard.RLock()
|
||||
for key, value := range shard.items {
|
||||
fn(key, value)
|
||||
}
|
||||
shard.RUnlock()
|
||||
}
|
||||
}
|
||||
|
||||
// Keys returns all keys as []string
|
||||
func (m ConcurrentMap[K, V]) Keys() []K {
|
||||
count := m.Count()
|
||||
ch := make(chan K, count)
|
||||
go func() {
|
||||
// Foreach shard.
|
||||
wg := sync.WaitGroup{}
|
||||
wg.Add(ShardCount)
|
||||
for _, shard := range m.shards {
|
||||
go func(shard *ConcurrentMapShared[K, V]) {
|
||||
// Foreach key, value pair.
|
||||
shard.RLock()
|
||||
for key := range shard.items {
|
||||
ch <- key
|
||||
}
|
||||
shard.RUnlock()
|
||||
wg.Done()
|
||||
}(shard)
|
||||
}
|
||||
wg.Wait()
|
||||
close(ch)
|
||||
}()
|
||||
|
||||
// Generate keys
|
||||
keys := make([]K, 0, count)
|
||||
for k := range ch {
|
||||
keys = append(keys, k)
|
||||
}
|
||||
return keys
|
||||
}
|
||||
|
||||
// MarshalJSON Reviles ConcurrentMap "private" variables to json marshal.
|
||||
func (m ConcurrentMap[K, V]) MarshalJSON() ([]byte, error) {
|
||||
// Create a temporary map, which will hold all item spread across shards.
|
||||
tmp := make(map[K]V)
|
||||
|
||||
// Insert items to temporary map.
|
||||
for item := range m.IterBuffered() {
|
||||
tmp[item.Key] = item.Val
|
||||
}
|
||||
return json.Marshal(tmp)
|
||||
}
|
||||
func strfnv32[K fmt.Stringer](key K) uint32 {
|
||||
return fnv32(key.String())
|
||||
}
|
||||
|
||||
func fnv32(key string) uint32 {
|
||||
hash := uint32(2166136261)
|
||||
const prime32 = uint32(16777619)
|
||||
keyLength := len(key)
|
||||
for i := 0; i < keyLength; i++ {
|
||||
hash *= prime32
|
||||
hash ^= uint32(key[i])
|
||||
}
|
||||
return hash
|
||||
}
|
||||
|
||||
// UnmarshalJSON Reverse process of Marshal.
|
||||
func (m *ConcurrentMap[K, V]) UnmarshalJSON(b []byte) (err error) {
|
||||
tmp := make(map[K]V)
|
||||
|
||||
// Unmarshal into a single map.
|
||||
if err := json.Unmarshal(b, &tmp); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// foreach key,value pair in temporary map insert into our concurrent map.
|
||||
for key, val := range tmp {
|
||||
m.Set(key, val)
|
||||
}
|
||||
return nil
|
||||
}
|
Reference in New Issue
Block a user